
Prof. V. V. Subrahmanyam

Director, SOCIS, IGNOU

1

 Processes that are executing concurrently may be either
independent processes or cooperating processes.

 Independent Process : Execution of one process does
not affects the execution of other processes.

 Cooperative Process : Execution of one process affects
the execution of other processes.

 Information Sharing

 Computation Speedup

 Modularity

 Convenience

3

 Cooperating processes frequently need to
communicate with each other to ensure tasks are
correctly done.

 Cooperating processes need an inter-process
communication (IPC) mechanism that will allow
them to exchange data and information.

4

 Sometimes, the correctness of the executing results
depend on the executing sequence of cooperating
processes. At this scenario, we need to
enforce synchronization to make sure we can get the
correct results.

5

 Sometimes the execution of one process may require
the result of another process. At this scenario, we need
a communication mechanism for those processes to
talk to each other.

6

 Shared Memory

 Message Passing

7

 Cooperating processes may communicate by sharing the
same piece of memory.

 One process can write some data to a piece of shared
memory, and another process can read from the same piece
of memory directly.

 When doing so, you need to be careful. Otherwise, the
executing result may not be the same as your expectation.
To understand why, we study the concept of race condition
first.

8

9

10

 When more than one processes are executing the
same code or accessing the same memory or any
shared variable in that condition there is a possibility
that the output or the value of the shared variable is
wrong so for that all the processes doing race to say
that my output is correct this condition known as
race condition.

 Several processes access and process the
manipulations over the same data concurrently,
then the outcome depends on the particular order
in which the access takes place.

12

 To solve race condition problem, we define a problem
called critical section problem.

 Critical section is the part of program where shared
memory is accessed.

 Find solutions that arrange the cooperating processes
properly, so that no two processes were ever in their
critical sections at the same time.

 A solution to critical section problem must satisfy
the following 3 conditions:

 Mutual Exclusion: No two processes can enter
their critical sections at the same time

 Progress: If no process is executing its critical
section, then one of the waiting processes can
enter its critical section.

 Bounded Waiting: No infinite wait for a process.

 Process Synchronization means sharing system resources
by processes in a such a way that, concurrent access to
shared data is handled thereby minimizing the chance of
inconsistent data.

 Maintaining data consistency demands mechanisms to
ensure synchronized execution of cooperating processes.

 Process Synchronization was introduced to handle
problems that arose while multiple process executions.

 Many systems provide hardware support for critical
section code. The critical section problem could be
solved easily in a single-processor environment if we
could disallow interrupts to occur while a shared
variable or resource is being modified.

 In this manner, we could be sure that the current
sequence of instructions would be allowed to execute
in order without pre-emption. Unfortunately, this
solution is not feasible in a multiprocessor
environment.

 Disabling interrupt on a multiprocessor environment
can be time consuming as the message is passed to all
the processors.

 This message transmission lag, delays entry of threads
into critical section and the system efficiency
decreases.

19

 TestAndSet is a hardware solution to the synchronization
problem. In TestAndSet, we have a shared lock variable
which can take either of the two values, 0 or 1.

 0 Unlock

 1 Lock

 Before entering into the critical section, a process inquires
about the lock. If it is locked, it keeps on waiting till it
becomes free and if it is not locked, it takes the lock and
executes the critical section.

 In Test And Set, Mutual exclusion and progress are
preserved but bounded waiting cannot be preserved.

21

int TestAndSet(int &lock)

{

 int initial = lock;

lock = 1;

return initial;

}

void enter_CS(X)

{

while test-and-set(X) ;

}

void leave_CS(X)

{

X = 0;

 }

 Compare and swap is a technique used when
designing concurrent algorithms.

 Basically, compare and swap compares an expected
value to the concrete value of a variable, and if the
concrete value of the variable is equals to the
expected value, swaps the value of the variable for a
new variable.

23

 Peterson’s Solution is a classical software based
solution to the critical section problem.

 In Peterson’s solution, we have two shared variables:

 boolean flag[i] :Initialized to FALSE, initially no one is
interested in entering the critical section

 int turn : The process whose turn is to enter the critical
section.

Peterson’s Solution preserves all three conditions :

 Mutual Exclusion is assured as only one process can
access the critical section at any time.

 Progress is also assured, as a process outside the
critical section does not block other processes from
entering the critical section.

 Bounded Waiting is preserved as every process gets a
fair chance.

Disadvantages of Peterson’s Solution:

 It involves Busy waiting

 It is limited to 2 processes

 The Bakery algorithm is one of the simplest known
solutions to the mutual exclusion problem for the
general case of N process.

 Bakery Algorithm is a critical section solution
for N processes. The algorithm preserves the first come
first serve property.

 Before entering its critical section, the process receives
a number. Holder of the smallest number enters the
critical section.

 If processes Pi and Pj receive the same number,

 if i < j

 Pi is served first;

 else

 Pj is served first.

 The numbering scheme always generates numbers in
increasing order of enumeration; i.e., 1, 2, 3, 3, 3, 3, 4,
5, …

29

 In this approach, in the entry section of code, a LOCK
is acquired over the critical resources modified and
used inside critical section, and in the exit section that
LOCK is released.

 As the resource is locked while a process executes its
critical section hence no other process can access it.

 Semaphores are integer variables that are used to solve
the critical section problem by using two atomic
operations, wait() and signal() that are used for
process synchronization.

 The alternate names of wait are P(), Down()

 The alternate names of Signal are V(), Up(), Post(),
Release()

 The wait operation decrements the value of its
argument S, if it is positive. If S is negative or zero,
then no operation is performed.

 wait(S)

 {

 while (S<=0);

 S--;

 }

 The signal operation increments the value of its
argument S.

 signal(S)

 {

 S++;

 }

 There are two main types of semaphores:

 Counting Semaphores

 Binary Semaphores

 These are integer value semaphores and have an
unrestricted value domain.

 These semaphores are used to coordinate the resource
access, where the semaphore count is the number of
available resources.

 If the resources are added, semaphore count
automatically incremented and if the resources are
removed, the count is decremented.

 The binary semaphores are like counting semaphores
but their value is restricted to 0 and 1.

 The wait operation only works when the semaphore is
1 and the signal operation succeeds when semaphore is
0.

 It is sometimes easier to implement binary
semaphores than counting semaphores.

 Semaphores allow only one process into the critical section.
They follow the mutual exclusion principle strictly and are
much more efficient than some other methods of
synchronization.

 There is no resource wastage because of busy waiting in
semaphores as processor time is not wasted unnecessarily
to check if a condition is fulfilled to allow a process to
access the critical section.

 Semaphores are implemented in the machine independent
code of the microkernel. So they are machine independent.

 Semaphores are complicated so the wait and signal
operations must be implemented in the correct order to
prevent deadlocks.

 Semaphores are impractical for last scale use as their use
leads to loss of modularity. This happens because the wait
and signal operations prevent the creation of a structured
layout for the system.

 Semaphores may lead to a priority inversion where low
priority processes may access the critical section first and
high priority processes later.

 The monitor is one of the ways to achieve Process
synchronization.

 The monitor is supported by programming languages
to achieve mutual exclusion between processes. For
example Java Synchronized methods. Java provides
wait() and notify() constructs.

 It is the collection of condition variables and
procedures combined together in a special kind of
module or a package.

 The processes running outside the monitor can’t access
the internal variable of the monitor but can call
procedures of the monitor.

 Only one process at a time can execute code inside
monitors.

 40

 Monitors have the advantage of making parallel
programming easier and less error prone than
using techniques such as semaphore.

42

 Semaphore can be used in other synchronization
problems besides Mutual Exclusion.

 Below are some of the classical problem depicting
flaws of process synchronization in systems where
cooperating processes are present.
 Bounded Buffer (Producer-Consumer) Problem

 Dining Philosophers Problem

 The Readers Writers Problem

 This problem is generalized in terms of the Producer
Consumer problem, where a finite buffer pool is used to
exchange messages between producer and consumer
processes.

 Because the buffer pool has a maximum size, this problem
is often called the Bounded buffer problem.

 Solution to this problem is, creating two counting
semaphores "full" and "empty" to keep track of the current
number of full and empty buffers respectively.

 A producer tries to insert data into an empty slot of
the buffer. A consumer tries to remove data from a
filled slot in the buffer. As you might have guessed
by now, those two processes won't produce the
expected output if they are being executed
concurrently.

 There needs to be a way to make the producer and
consumer work in an independent manner.

 The dining philosopher's problem involves the allocation of
limited resources to a group of processes in a deadlock-free
and starvation-free manner.

 There are five philosophers sitting around a table, in which
there are five chopsticks/forks kept beside them and a bowl
of rice in the centre.

 When a philosopher wants to eat, he uses two chopsticks -
one from their left and one from their right. When a
philosopher wants to think, he keeps down both chopsticks
at their original place.

 At any instant, a philosopher is either eating or
thinking. When a philosopher wants to eat, he uses
two chopsticks - one from their left and one from
their right. When a philosopher wants to think, he
keeps down both chopsticks at their original place.

 In this problem there are some processes
(called readers) that only read the shared data, and
never change it, and there are other processes
(called writers) who may change the data in addition
to reading, or instead of reading it.

 There are various type of readers-writers problem,
most centered on relative priorities of readers and
writers.

 There is a shared resource which should be accessed by multiple
processes.

 There are two types of processes in this context. They
are reader and writer.

 Any number of readers can read from the shared resource
simultaneously, but only one writer can write to the shared
resource.

 When a writer is writing data to the resource, no other process
can access the resource. A writer cannot write to the resource if
there are non zero number of readers accessing the resource at
that time.

 Mechanism for processes to communicate and to
synchronize their actions.

 In this method, processes communicate with each other
without using any kind of shared memory.

 Message system – processes communicate with each
other without resorting to shared variables.

 IPC facility provides two operations:
 send(message) – message size fixed or variable
 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

 Processes must name each other explicitly:
 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of a communication link

 Links are established automatically.

 A link is associated with exactly one pair of
communicating processes.

 Between each pair there exists exactly one link.

 The link may be unidirectional, but is usually bi-
directional.

 Messages are directed and received from
mailboxes (also referred to as ports).
 Each mailbox has a unique id.

 Processes can communicate only if they share
a mailbox.

 Properties of communication link
 Link established only if processes share a common

mailbox

 A link may be associated with many processes.

 Each pair of processes may share several
communication links.

 Link may be unidirectional or bi-directional.

 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:

 send(A, message) – send a message to

 mailbox A

 receive(A, message) – receive a message

 from mailbox A

