Sequential Circuits

Presented by: Mr Akshay Kumar Associate Professor, SOCIS, IGNOU For MCA/BCA /PGDCA Students of IGNOU

Reference Material of IGNOU

Block 1 Unit 4 of MCS-012

Outline of Presentation
Sequential Circuits
Flip-Flops
Some Sequential Circuits

Sequential Circuits: The Definition

A circuit whose output is dependent on the Input and Current State of the Circuit
An interconnection of

combinational circuits and
storage elements

The storage elements, called flip-flops, store binary information that indicates the state of sequential circuit at that time

Why Needed?

Useful for cases
where a series of events occur
Storage of past information is useful
For example – Counters

Classification of Sequential Circuits

Broadly classified, depending upon the time at which their internal state change
Synchronous: The state changes at Discrete Intervals.
Use flip-flops
A good choice for discrete digital devices
Asynchronous sequential circuits may be regarded as combinational circuit with feedback

Synchronization in a sequential circuit

- The synchronization in a sequential circuit is achieved by a clock pulse generator, which gives continuous clock pulse.
- A clock pulse can have two states: 0 or 1; disabled or active state. The storage elements can change their state either when a clock pulse occurs or during the rising or falling edge of the clock pulse.

Flip-Flops

A flip-flop is a binary cell, which stores one bit of information. It itself is a sequential circuit.
Flip-flop can change its state when clock pulse occurs but when?

Generally, a flip-flop can change its state when the clocks transitions from 0 to 1 (rising edge) or from 1 to 0 (falling edge) and not when clock is 1 If the storage element changes its state when clock is exactly at 1 then it is called a latch. A flip-flop is edge-triggered and latch is leveltriggered.

An S-R Latch using NOR gates

- Can be constructed using NOR or NAND gates
- Two Input S (SET) and R (RESET)
- Output –If Q=1 & Q'=0, the latch is in the SET state
- If Q=0 & Q'=1, it is the RESET state.

Summary of S-R Flip-flops Operations If no clock signal i.e. C=0 No change in OUTPUT irrespective of R & S values Occurrence of Clock Signal When S=0, R=0 then output Remains Unchanged When R=1 S=0 then output Q=0 & Q'=1 (Reset) When S=1, R=0 then output Q=1 & Q'=0 (Set) When R=1 S=1 then output is not defined May become 0 or 1 depending upon internal timing delays of circuit.

J-K Flip-flop

The J-K flip-flop
Modification of S-R flip-flop
Two input J and K, identical to S and R
When J & K both are 1, the flip- flop output is complemented with clock transition.

Excitation Tables

The characteristic tables of flip-flops –

- provide the information of next state based on present state and input values
- Such tables are useful for analysis of sequential circuits.

 For circuit design: NEED to define the FLIP-FLOP input, for the required transition from a given state to next state – called Excitation Table of flip-flop

How to Make Excitation Table for J-K Flip flop? Transition from present state 0 to next state 0: J=0, K=0, No change in the state of flip flop J=0, K=1, Reset flip-flop to state 0 Thus J=0 but K can be 0 or 1 that is X. **Characteristic Table** K Q(T+1) 1 0 0 Q(T) No change in state 1 0 1 0 Reset 1 Set $\mathbf{0}$ Complement Q(T) 1 1 1

Transition from present state 0 to next state 1:
a) J=1, K=0, Set flip flop state to 1
b) J=1, K=1, Complement flip-flop from 0 to 1
Thus J=1 but K can be 0 or 1 that is X.

Characteristic Table CJ K Q(T+1)1 0 0 Q(T) No change in state 0 1 1 **0** Reset 0 1 Set 1 Complement Q(T) 1 1

Transition from present state 1 to next state 0:
a) J=0, K=1, Reset the flip flop state to 0
b) J=1, K=1, Complement flip-flop from 1 to 0
Thus J can be 0 or 1 that is X, but K=1.

Characteristic Table K Q(T+1)0 1 0 Q(T) No change in state 1 1 0 **0** Reset 1 Set 0 1 Complement Q(T) 1 1

Transition from present state 1 to next state 1:
a) J=0, K=0, No change in state 1
b) J=1, K=0, Set flip flop state to 1
Thus, J can be 0 or 1 that is X, but K=0

Characteristic Table Q(T+1)K C 0 1 0 Q(T) No change in state 0 1 **0** Reset 1 1 1 0 1 Set Complement Q(T) 1 1 1

Summary of the process

 Present State
 Next State
 J K

 0
 0
 0
 X

 0
 1
 1
 X

 1
 0
 X
 1

 1
 1
 X
 0

Can be achieved by

a) J=0, K=0, No Change
b) J=0, K=1, Reset
a) J=1, K=0, Set
b) J=1, K=1, Complement
a) J=0, K=1, Reset
b) J=1, K=1, Complement
a) J=0, K=0, No Change
b) J=1, K=0, Set

Excitation Tables for J-K Flip Flop

Q(t)	Q(t+1)	J	K
0	0	0	X
0		1	X
1	0	X	1
1	0.01.00	X	0

The symbol X in the table means don't care condition i.e. doesn't matter whether input is 0 or 1

Design of a Sequential Circuit

Counter:

A fundamental circuit used for timing and control
Problem: Design a 2 bit counter, that changes its input when an external input X is 1.
For the present design we are using D flip flop.
For 2 bit counter, 2 flip-flops are needed

Characteristics table and Excitation table for D flip-flop

D	Q(t	+1)
0	0 Clea	
1	1 Set	

The Change of State

Q(t)	Q(t+1) D	Present	t State	Input	ut Next State		Input to Flip Flops	
		Α	В	X	Α	В	D _A	D _B
0	0 0	0	0	0	0	0		
0	1 1	0	0	1	0	1		
1		0	1	0	0	1		
		0	1	1	1	0		
		1	0	0	1	0		
		1	0	1	1	1		
it if a		1	1	0	1	1		
		1	1	1	0	0		
								24

The Change of State

Q(t)	Q(t) Q(t+1) D		Present	Present State		Next St	ate	Input to Flip Flops	
			Α	В	Х	Α	В	D _A	D _B
0	0	0	0	0	0	0	0	0	
0	1		0	0	1	0	1	0	
1	0	-	0	1	0	0	1	0	
	U		0	1	1	1	0	1	
			1	0	0	1	0	1	
			1	0	1	1	1	1	
			1	1	0	1	1	1	
			1	1	1	0	0	0	
									25

The Change of State

Q(t)	Q(t+1)	D	Present State		Input Next State			Input to Flip Flops	
			Α	В	X	Α	В	D _A	D _B
0	0	0	0	0	0	0	0	0	0
0	1		0	0	1	0	1	0	1
1			0	1	0	0	1	0	1
			0	1	1	1	0	1	0
1			1	0	0	1	0	1	0
			1	0	1	1	1	1	1
			1	1	0	1	1	1	1
			1	1	1	0	0	0	0
							154		26

How to Design Circuit?

		INPUT		OUTP	TUT	
	Present	State	Input	Input to FI	ip Flops	
	Α	В	X	D _A	D _B	
	0	0	0	0	0	
	0	0	1	0	1	
	0	1	0	0	1	
	0	1	1	1	0	
	1	0	0	1	0	
	1	0	1	1	1	
	1	1	0	1	1	
	1	1	1	0	0	28
14 Mary		A Sale				Elin A Elin F

K-map for D _A and D _B											
Present State		Present State Input Input to Flip Flops				\BX A\	00	01	11	10	
Α	В	X	D _A	D _B		0	0	1	3 1	2	
0	0	0	0	0	11 12 1	1	4 1	5 1	7	61	
0	0	1	0	1			For D₄:	F=AB'+A	\ \X'+A'B>	<	
0	1	0	0	1	P		~	04	44	4.0	
0	1	1	1	0	A STATE	\BX A\	00	01	11	10	
1	0	0	1	0		0	0	4	3	4	
1	0	1	1	1	The second		v	11	J	2	
1	1	0	1	1		1	4	5 1	7	61	
1	1	1	0	0 0 For D _B : F=B'X+BX'							

The Counter Circuit

Check Your Progress

Attempt all the Questions given in CYP of your Block Read the functioning of all the Sequential Circuits